Fluctuation scaling in complex systems Zoltán Eisler^{1,2}, János Kertész² ¹Capital Fund Management, Paris, France ²Department of Theoretical Physics, Budapest University of Technology and Economics ### Outline - * Taylor's law a.k.a. Fluctuation scaling - * Empirical data and "theory" in parallel - * Random walks - ***** Forests - ***** Coins - * Humans # Taylor's law or fluctuation scaling NATURE March 4, 1961 VOL. 189 AGGREGATION, VARIANCE AND THE MEAN By L. R. TAYLOR Department of Entomology, Rothamsted Experimental Station, Harpenden, Herts # (Temporal) Fluctuation scaling - * Take (stable) populations i of some species, and observe them in time - * Calculate the mean and the variation of the specimen count - ** Plot the two $\boxed{\langle f_i \rangle}$ $\boxed{\sigma_i}$ # Fluctuation scaling $$\sigma_i \propto \langle f_i \rangle^{\alpha}$$ #### Fluctuations in Network Dynamics M. Argollo de Menezes and A.-L. Barabási Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA (Received 11 June 2003; published 13 January 2004) #### Fluctuations in Network Dynamics M. Argollo de Menezes and A.-L. Barabási Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA (Received 11 June 2003; published 13 January 2004) #### Fluctuations in Network Dynamics M. Argollo de Menezes and A.-L. Barabási Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA (Received 11 June 2003; published 13 January 2004) # Fluctuation scaling - * Take similar systems i, and observe them in time - * Calculate the mean and the variation of a positive additive signal | Subj. | System | T/E | Refs. | |-------------------|-------------------------------|------|-----------------| | Networks | Random walk | Т | [7, 31, 33] | | | Network models | Т | [34, 35] | | | Highway network | Т | [7, 31] | | | World Wide Web | Т | [7, 31] | | | Internet | Т | [7, 31, 32] | | Phy. | Heavy ion collisions | E | [26-28] | | | Cosmic rays | E | [29, 30] | | Soc./econ. | Stock market | Т | [8, 56, 57, 60] | | | Stock market | Е | this review | | | Business firm growth rates | E | [62, 63] | | | Email traffic | Т | this review | | | Printing activity | Т | this review | | CI. | River flow | Т | [64, 65] | | | Precipitation | Т | [66] | | Ecology/pop. dyn. | Forest reproductive rates | Т | [46, 47] | | | Satake-Iwasa forest model | Т | [45] | | | Crop yield | Т | [6] | | | Animal populations | Т, Е | [5, 10, 15, 16] | | | Diffusion Limited population | E | [17] | | | Population growth | Т | [67, 68] | | | Exponential dispersion models | Е | [18, 21, 69] | | | Interacting population model | Т | [37] | | Life sciences | Cell numbers | E | [20] | | | Protein expression | Т | [55] | | | Gene expression | Т | [70, 71] | | | Individual health | Е | [72] | | | Tumor cells | Е | [21] | | | Human genome | E | [22, 23] | | | Blood flow | E | [69] | | | Oncology | E | [21] | | | Epidemiology | Т | [53, 54] | Table II: A list of some studies where fluctuation scaling/Taylor's law was directly applied or implied by a similar formalism. Groups were assigned by subject areas, Phy. = Physics, Cl. = Climatology. The column T/E shows the type of fluctuation scaling, T: temporal, E: ensemble. # Fluctuation scaling - * Take similar systems, and observe them in time - * Calculate the mean and the variation of some positive signal # Why do we care? * the value of α varies mostly in [1/2, 1] $$\sigma_i \propto \langle f_i \rangle^{\alpha}$$ # Why do we care? - * the value of α varies mostly in [1/2, 1] - * simple dynamical rules? $$\sigma_i \propto \langle f_i \rangle^{\alpha}$$ # Why do we care? - * the value of α varies mostly in [1/2, 1] - * simple dynamical rules? - * it is NOT a universal exponent $$\sigma_i \propto \langle f_i \rangle^{\alpha}$$ # The possible values of α - * Random walks - ***** Forests - * Coins (?) - * Humans $$* V_{n,i}(t) = \begin{cases} 1 & \text{if walker } n \text{ is on} \\ & \text{node } i \text{ at time } t, \\ 0 & \text{if not.} \end{cases}$$ $$**V_{n,i}(t) = \begin{cases} 1 & \text{if walker } n \text{ is on} \\ & \text{node } i \text{ at time } t, \\ 0 & \text{if not.} \end{cases}$$ $$** f_i(t) = \sum_{n=1}^{N} V_{i,n}(t)$$ $$** f_i(t) = \sum_{n=1}^{N} V_{i,n}(t)$$ $$**\langle f_i \rangle = N \langle V_{n,i} \rangle = N p_i \propto k_i$$ $$** f_i(t) = \sum_{n=1}^{N} V_{i,n}(t)$$ $$**\langle f_i \rangle = N \langle V_{n,i} \rangle = N p_i \propto k_i$$ $$* \sigma_i^2 = Np_i$$ $$* V_{n,i}(t) = \begin{cases} 1 & \text{if walker } n \text{ is on} \\ & \text{node } i \text{ at time } t, \\ 0 & \text{if not.} \end{cases}$$ $$* f_i(t) = \sum_{n=1}^{N} V_{i,n}(t)$$ $$**\langle f_i \rangle = N \langle V_{n,i} \rangle = N p_i \propto k_i$$ $$** \sigma_i^2 = Np_i$$ $$\alpha = 1/2$$ $$*N(t)$$ walkers $$* f_i(t) = \sum_{n=1}^{N(t)} V_{i,n}(t)$$ $$**\langle f_i \rangle = \langle N \rangle \langle V_{n,i} \rangle = \langle N \rangle p_i \propto k_i$$ $$\sigma_i^2 = Np_i + \left\lceil \frac{\Sigma_N}{\langle N \rangle} \right\rceil^2 (Np_i)^2$$ $$*N(t)$$ walkers $$* f_i(t) = \sum_{n=1}^{N(t)} V_{i,n}(t)$$ $$**\langle f_i \rangle = \langle N \rangle \langle V_{n,i} \rangle = \langle N \rangle p_i \propto k_i$$ $$* \sigma_i^2 = Np_i + \left\lceil \frac{\Sigma_N}{\langle N \rangle} \right\rceil^2 (Np_i)^2$$ # Classification by a - * $\alpha = 1/2$: central limit theorem - $*\alpha$ = 1: strongly driven system - * Universality classes? - * Any value between the two is a crossover? $$\sigma_i \propto \langle f_i \rangle^{\alpha}$$ - * Consider a forest i of N_i trees - * Tree n produces $V_{n,i}(t)$ seeds in year t - * The total seed production of year t # Masting $$f_i(t) = \sum_{n=1}^{N_i} V_{n,i}(t)$$ # Masting $$H_V = 1 - \frac{0.4}{2} = 0.8$$ $$\sigma_i^2 = \Sigma_{Vi}^2 \left\langle N_i^{2H_{Vi}} \right\rangle$$ $$\alpha = H_V$$ $$H_V = 1 - \frac{0.4}{2} = 0.8$$ $$\sigma_i^2 = \Sigma_{Vi}^2 \left\langle N_i^{2H_{Vi}} \right\rangle$$ $$\alpha = H_V$$ - * Synchronization phase transition - * Satake-Iwasa model $$\alpha = H_V$$ # Animals? ## Animals? #### letters to nature # Noise and determinism in synchronized sheep dynamics B. T. Grenfell*, K. Wilson†, B. F. Finkenstädt*, T. N. Coulson‡, S. Murray§, S. D. Albon∥, J. M. Pemberton¶, T. H. Clutton-Brock* & M. J. Crawley# #### Animals? ### Classification by a - * $\alpha = 1/2$: central limit theorem - $*\alpha = 1$: strongly driven system - * $1/2 < \alpha < 1$: sums of correlated random variables $$\sigma_i \propto \langle f_i \rangle^{\alpha}$$ * mean: 1/2, 1, 3/2, 2 * variance: 1/4, 1/2, 3/4, 1 $\alpha = 1/2$ $\alpha = 1$ $\alpha = 3/4$ ### Classification by a - * $\alpha = 1/2$: central limit theorem - * $\alpha = 1$: strongly driven system - * 1/2 < α < 1: sums of correlated random variables - * $1/2 < \alpha < 1$: "coin flipping" $$\sigma_i \propto \langle f_i \rangle^{\alpha}$$ $$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$ $$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$ $$\sigma_i(\Delta t) = \left\langle \left[f_i^{\Delta t}(t) - \left\langle f_i^{\Delta t}(t) \right\rangle \right]^2 \right\rangle^{1/2} \propto \Delta t^{H_i}$$ $$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$ $$\sigma_i(\Delta t) = \left\langle \left[f_i^{\Delta t}(t) - \left\langle f_i^{\Delta t}(t) \right\rangle \right]^2 \right\rangle^{1/2} \propto \Delta t^{H_i}$$ $$\Delta t^{H_i} \propto \langle f_i \rangle^{\alpha(\Delta t)}$$ $$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$ $$\sigma_i(\Delta t) = \left\langle \left[f_i^{\Delta t}(t) - \left\langle f_i^{\Delta t}(t) \right\rangle \right]^2 \right\rangle^{1/2} \propto \Delta t^{H_i}$$ $$\Delta t^{H_i} \propto \langle f_i \rangle^{\alpha(\Delta t)}$$ $$\frac{dH_i}{d(\log\langle f_i\rangle)} \sim \frac{d\alpha(\Delta t)}{d(\log\Delta t)} \sim \gamma$$ $$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$ $$\sigma_i(\Delta t) = \left\langle \left[f_i^{\Delta t}(t) - \left\langle f_i^{\Delta t}(t) \right\rangle \right]^2 \right\rangle^{1/2} \propto \Delta t^{H_i}$$ $$H_i = H^* + \gamma \log \langle f_i \rangle$$ $$\alpha(\Delta t) = \alpha^* + \gamma \log \Delta t$$ ### Human dynamics $$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$ ### Human dynamics $$\alpha(\Delta t) = \alpha^* + \gamma \log \Delta t$$ $$H_i = H^* + \gamma \log \langle f_i \rangle$$ ### Human dynamics $$\alpha(\Delta t) = \alpha^* + \gamma \log \Delta t$$ $$H_i = H^* + \gamma \log \langle f_i \rangle$$ * FS enforces a logarithmic relationship on correlation strength → only the order of magnitude matters! - * FS enforces a logarithmic relationship on correlation strength → only the order of magnitude matters! - * order of magnitude matters → non-universality - * FS enforces a logarithmic relationship on correlation strength → only the order of magnitude matters! - ** order of magnitude matters → non-universality - * α can take any value depending on the time resolution - * FS enforces a logarithmic relationship on correlation strength → only the order of magnitude matters! - ** order of magnitude matters → non-universality - * α can take any value depending on the time resolution - * one must map a range in ∆t #### Conclusions - * Fluctuation scaling: in any field with positive, additive quantities - * The exponent α can be used to gain hints about dynamics - * Empirical observation of limit theorems? - * Hurst exponents change logarithmically with size? #### References #### References - * L.R. Taylor, Nature 189, 732 (1961) - * M. de Menezes and A.-L. Barabási, PRL 92, 29701 (2004) - * W. Koenig and J. Knops, The American Naturalist 155, 59 (2000) - * Z. Eisler and J. Kertész, PRE 71, 057104 (2005) * Z. Eisler et al., arXiv:0708.2053, to appear in Advances in Physics