Fluctuation scaling in complex systems

Zoltán Eisler^{1,2}, János Kertész²

¹Capital Fund Management, Paris, France

²Department of Theoretical Physics, Budapest
University of Technology and Economics

Outline

- * Taylor's law a.k.a. Fluctuation scaling
- * Empirical data and "theory" in parallel
 - * Random walks
 - ***** Forests
 - ***** Coins
 - * Humans

Taylor's law or fluctuation scaling

NATURE

March 4, 1961 VOL. 189

AGGREGATION, VARIANCE AND THE MEAN

By L. R. TAYLOR

Department of Entomology, Rothamsted Experimental Station, Harpenden, Herts

(Temporal) Fluctuation scaling

- * Take (stable) populations i of some species, and observe them in time
- * Calculate the mean and the variation of the specimen count
- ** Plot the two $\boxed{\langle f_i \rangle}$ $\boxed{\sigma_i}$

Fluctuation scaling

$$\sigma_i \propto \langle f_i \rangle^{\alpha}$$

Fluctuations in Network Dynamics

M. Argollo de Menezes and A.-L. Barabási

Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

(Received 11 June 2003; published 13 January 2004)

Fluctuations in Network Dynamics

M. Argollo de Menezes and A.-L. Barabási

Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

(Received 11 June 2003; published 13 January 2004)

Fluctuations in Network Dynamics

M. Argollo de Menezes and A.-L. Barabási

Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA

(Received 11 June 2003; published 13 January 2004)

Fluctuation scaling

- * Take similar systems i, and observe them in time
- * Calculate the mean and the variation of a positive additive signal

Subj.	System	T/E	Refs.
Networks	Random walk	Т	[7, 31, 33]
	Network models	Т	[34, 35]
	Highway network	Т	[7, 31]
	World Wide Web	Т	[7, 31]
	Internet	Т	[7, 31, 32]
Phy.	Heavy ion collisions	E	[26-28]
	Cosmic rays	E	[29, 30]
Soc./econ.	Stock market	Т	[8, 56, 57, 60]
	Stock market	Е	this review
	Business firm growth rates	E	[62, 63]
	Email traffic	Т	this review
	Printing activity	Т	this review
CI.	River flow	Т	[64, 65]
	Precipitation	Т	[66]
Ecology/pop. dyn.	Forest reproductive rates	Т	[46, 47]
	Satake-Iwasa forest model	Т	[45]
	Crop yield	Т	[6]
	Animal populations	Т, Е	[5, 10, 15, 16]
	Diffusion Limited population	E	[17]
	Population growth	Т	[67, 68]
	Exponential dispersion models	Е	[18, 21, 69]
	Interacting population model	Т	[37]
Life sciences	Cell numbers	E	[20]
	Protein expression	Т	[55]
	Gene expression	Т	[70, 71]
	Individual health	Е	[72]
	Tumor cells	Е	[21]
	Human genome	E	[22, 23]
	Blood flow	E	[69]
	Oncology	E	[21]
	Epidemiology	Т	[53, 54]

Table II: A list of some studies where fluctuation scaling/Taylor's law was directly applied or implied by a similar formalism. Groups were assigned by subject areas, Phy. = Physics, Cl. = Climatology. The column T/E shows the type of fluctuation scaling, T: temporal, E: ensemble.

Fluctuation scaling

- * Take similar systems, and observe them in time
- * Calculate the mean and the variation of some positive signal

Why do we care?

* the value of α varies mostly in [1/2, 1]

$$\sigma_i \propto \langle f_i \rangle^{\alpha}$$

Why do we care?

- * the value of α varies mostly in [1/2, 1]
- * simple dynamical rules?

$$\sigma_i \propto \langle f_i \rangle^{\alpha}$$

Why do we care?

- * the value of α varies mostly in [1/2, 1]
- * simple dynamical rules?
- * it is NOT a universal exponent

$$\sigma_i \propto \langle f_i \rangle^{\alpha}$$

The possible values of α

- * Random walks
- ***** Forests
- * Coins (?)
- * Humans

$$* V_{n,i}(t) = \begin{cases} 1 & \text{if walker } n \text{ is on} \\ & \text{node } i \text{ at time } t, \\ 0 & \text{if not.} \end{cases}$$

$$**V_{n,i}(t) = \begin{cases} 1 & \text{if walker } n \text{ is on} \\ & \text{node } i \text{ at time } t, \\ 0 & \text{if not.} \end{cases}$$

$$** f_i(t) = \sum_{n=1}^{N} V_{i,n}(t)$$

$$** f_i(t) = \sum_{n=1}^{N} V_{i,n}(t)$$

$$**\langle f_i \rangle = N \langle V_{n,i} \rangle = N p_i \propto k_i$$

$$** f_i(t) = \sum_{n=1}^{N} V_{i,n}(t)$$

$$**\langle f_i \rangle = N \langle V_{n,i} \rangle = N p_i \propto k_i$$

$$* \sigma_i^2 = Np_i$$

$$* V_{n,i}(t) = \begin{cases} 1 & \text{if walker } n \text{ is on} \\ & \text{node } i \text{ at time } t, \\ 0 & \text{if not.} \end{cases}$$

$$* f_i(t) = \sum_{n=1}^{N} V_{i,n}(t)$$

$$**\langle f_i \rangle = N \langle V_{n,i} \rangle = N p_i \propto k_i$$

$$** \sigma_i^2 = Np_i$$

$$\alpha = 1/2$$

$$*N(t)$$
 walkers

$$* f_i(t) = \sum_{n=1}^{N(t)} V_{i,n}(t)$$

$$**\langle f_i \rangle = \langle N \rangle \langle V_{n,i} \rangle = \langle N \rangle p_i \propto k_i$$

$$\sigma_i^2 = Np_i + \left\lceil \frac{\Sigma_N}{\langle N \rangle} \right\rceil^2 (Np_i)^2$$

$$*N(t)$$
 walkers

$$* f_i(t) = \sum_{n=1}^{N(t)} V_{i,n}(t)$$

$$**\langle f_i \rangle = \langle N \rangle \langle V_{n,i} \rangle = \langle N \rangle p_i \propto k_i$$

$$* \sigma_i^2 = Np_i + \left\lceil \frac{\Sigma_N}{\langle N \rangle} \right\rceil^2 (Np_i)^2$$

Classification by a

- * $\alpha = 1/2$: central limit theorem
- $*\alpha$ = 1: strongly driven system
- * Universality classes?
- * Any value between the two is a crossover?

$$\sigma_i \propto \langle f_i \rangle^{\alpha}$$

- * Consider a forest i of N_i trees
- * Tree n produces $V_{n,i}(t)$ seeds in year t
- * The total seed production of year t

Masting

$$f_i(t) = \sum_{n=1}^{N_i} V_{n,i}(t)$$

Masting

$$H_V = 1 - \frac{0.4}{2} = 0.8$$

$$\sigma_i^2 = \Sigma_{Vi}^2 \left\langle N_i^{2H_{Vi}} \right\rangle$$

$$\alpha = H_V$$

$$H_V = 1 - \frac{0.4}{2} = 0.8$$

$$\sigma_i^2 = \Sigma_{Vi}^2 \left\langle N_i^{2H_{Vi}} \right\rangle$$

$$\alpha = H_V$$

- * Synchronization phase transition
- * Satake-Iwasa model

$$\alpha = H_V$$

Animals?

Animals?

letters to nature

Noise and determinism in synchronized sheep dynamics

B. T. Grenfell*, K. Wilson†, B. F. Finkenstädt*, T. N. Coulson‡,

S. Murray§, S. D. Albon∥, J. M. Pemberton¶,

T. H. Clutton-Brock* & M. J. Crawley#

Animals?

Classification by a

- * $\alpha = 1/2$: central limit theorem
- $*\alpha = 1$: strongly driven system
- * $1/2 < \alpha < 1$: sums of correlated random variables

$$\sigma_i \propto \langle f_i \rangle^{\alpha}$$

* mean: 1/2, 1, 3/2, 2

* variance: 1/4, 1/2, 3/4, 1

 $\alpha = 1/2$

 $\alpha = 1$

 $\alpha = 3/4$

Classification by a

- * $\alpha = 1/2$: central limit theorem
- * $\alpha = 1$: strongly driven system
- * 1/2 < α < 1: sums of correlated random variables
- * $1/2 < \alpha < 1$: "coin flipping"

$$\sigma_i \propto \langle f_i \rangle^{\alpha}$$

$$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$

$$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$

$$\sigma_i(\Delta t) = \left\langle \left[f_i^{\Delta t}(t) - \left\langle f_i^{\Delta t}(t) \right\rangle \right]^2 \right\rangle^{1/2} \propto \Delta t^{H_i}$$

$$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$

$$\sigma_i(\Delta t) = \left\langle \left[f_i^{\Delta t}(t) - \left\langle f_i^{\Delta t}(t) \right\rangle \right]^2 \right\rangle^{1/2} \propto \Delta t^{H_i}$$

$$\Delta t^{H_i} \propto \langle f_i \rangle^{\alpha(\Delta t)}$$

$$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$

$$\sigma_i(\Delta t) = \left\langle \left[f_i^{\Delta t}(t) - \left\langle f_i^{\Delta t}(t) \right\rangle \right]^2 \right\rangle^{1/2} \propto \Delta t^{H_i}$$

$$\Delta t^{H_i} \propto \langle f_i \rangle^{\alpha(\Delta t)}$$

$$\frac{dH_i}{d(\log\langle f_i\rangle)} \sim \frac{d\alpha(\Delta t)}{d(\log\Delta t)} \sim \gamma$$

$$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$

$$\sigma_i(\Delta t) = \left\langle \left[f_i^{\Delta t}(t) - \left\langle f_i^{\Delta t}(t) \right\rangle \right]^2 \right\rangle^{1/2} \propto \Delta t^{H_i}$$

$$H_i = H^* + \gamma \log \langle f_i \rangle$$

$$\alpha(\Delta t) = \alpha^* + \gamma \log \Delta t$$

Human dynamics

$$\sigma_i \propto \langle f_i \rangle^{\alpha(\Delta t)}$$

Human dynamics

$$\alpha(\Delta t) = \alpha^* + \gamma \log \Delta t$$

$$H_i = H^* + \gamma \log \langle f_i \rangle$$

Human dynamics

$$\alpha(\Delta t) = \alpha^* + \gamma \log \Delta t$$

$$H_i = H^* + \gamma \log \langle f_i \rangle$$

* FS enforces a logarithmic relationship on correlation strength → only the order of magnitude matters!

- * FS enforces a logarithmic relationship on correlation strength → only the order of magnitude matters!
- * order of magnitude matters → non-universality

- * FS enforces a logarithmic relationship on correlation strength → only the order of magnitude matters!
- ** order of magnitude matters → non-universality
- * α can take any value depending on the time resolution

- * FS enforces a logarithmic relationship on correlation strength → only the order of magnitude matters!
- ** order of magnitude matters → non-universality
- * α can take any value depending on the time resolution
- * one must map a range in ∆t

Conclusions

- * Fluctuation scaling: in any field with positive, additive quantities
- * The exponent α can be used to gain hints about dynamics
- * Empirical observation of limit theorems?
- * Hurst exponents change logarithmically with size?

References

References

- * L.R. Taylor, Nature 189, 732 (1961)
- * M. de Menezes and A.-L. Barabási, PRL 92, 29701 (2004)
- * W. Koenig and J. Knops, The American Naturalist 155, 59 (2000)
- * Z. Eisler and J. Kertész, PRE 71, 057104 (2005)

* Z. Eisler et al., arXiv:0708.2053, to appear in Advances in Physics